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I. INTRODUCTION

There is an overabundance of important problems in na-
ture that involve moving boundaries: phase transitions,
liquid-liquid or liquid-gas flows, membranes, vesicles, etc.
Very often, these problems are highly nonlinear, and analyti-
cal solutions are the exception rather than the rule. Resorting
to numerical simulations is often mandatory. However, the
numerical solution of moving boundary problems is very
challenging and can prove to be very complex as far as al-
gorithms or data structures are concerned. For instance, in
the front-tracking method �1�, the moving boundary can be
discretized using a triangular mesh, which is very difficult to
handle, especially for three-dimensional and parallel simula-
tions. These numerical difficulties �which also exist with
other numerical techniques� are at the origin of the popular-
ity of the phase-field method. Indeed, in the phase-field ap-
proach, the sharp interface is replaced by an equivalent dif-
fuse interface. This a priori extra complexity is
counterbalanced by the ease of its numerical implementation.
Indeed, the two-phase problem is modeled by partial differ-
ential equations that are valid in the whole space �as if the
boundaries were absent�, and the motion of all the interfaces
present within a system is part of the solution of these equa-
tions. The set of differential equations can thus be discretized
using classical numerical schemes, and this highly simplifies
the numerical implementation.

Another important virtue of phase-field models is that
they are generally based on the definition of an energy func-
tional. This characteristic thus potentially ensures their ther-
modynamic consistency. This consistency is important since
it ensures that the model is well posed physically and math-
ematically. This well-posedness follows from the second law
of thermodynamics. From a physical point a view, the con-
sistency should always be a requirement and, from a math-
ematical point of view, it ensures the existence of a

Lyapunov function �i.e., the entropy�, which is an important
characteristic in the development of stable numerical
schemes �e.g., �9��.

Phase-field formulations lead naturally to a systematic
fact: the interface is endowed with a surface tension energy.
In many applications �solid-liquid transitions, liquid-liquid
two-phase flows, etc.�, capillarity plays a key role in the
physics studied, and the existence of a built-in surface ten-
sion may be regarded as an advantage. However, in other
physical systems such as vesicles �or biological membranes
in general�, interfaces are not endowed with any surface ten-
sion and the use of the classical phase-field model implies
the existence of artificial capillarity.

Note that, even if a physical system possesses a surface
tension, it may prove useful to suppress it from the phase-
field equation, while introducing it explicitly in the momen-
tum balance equation �allowing thus for an extra control on
the surface energy, independently from the phase field�. This
method was adopted by Folch et al. �2� in the Saffmann-
Taylor problem. The idea is to subtract from the phase-field
equation a contribution that naturally cancels the leading-
order surface tension term inherent in the phase-field equa-
tion. Their analysis is based on an asymptotic expansion and
the modification proposed ensures that the dominant contri-
bution vanishes to leading order. This was initially adopted
for vesicles in Refs. �3,4�. Despite the merit of the method,
this subtraction from the phase-field equation does not lend
itself to a thermodynamically consistent model, as we shall
see.

Phase-field models for vesicles and membranes are sub-
jects of increasing interest �3–6�. Our focus is to suppress the
surface energy by keeping intact the thermodynamic consis-
tency of the model. This task is not trivial, as we shall see.
Furthermore, the phase-field equation is generally coupled
with other equations that are of primary physical interest,
such as the fluid velocity. Hence, a modification in the phase-
field equation should alter the evolution equations of the
other physical variables. How the other equations should be
modified in a coherently concerted fashion is a difficult task
if one does not adopt a systematic well-posed general formu-
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lation. The present study offers a consistent framework to
deal with these questions.

This paper is organized as follows. In Sec. II, the main
characteristics of the classical phase-field model are pre-
sented and the model of Ref. �2� is briefly recalled. This
analysis allows us to propose a model that eliminates the
motion of the interface proportional to its curvature and that
is thermodynamically consistent; this model is presented in
Sec. III. In Sec. IV, we present a matched asymptotic expan-
sion of the model. We show in particular that our model is
equivalent to that of Folch et al. �2� up to second order. In
Sec. V, our phase-field model is used to propose a thermo-
dynamically consistent phase-field model for vesicles that
incorporates local surface incompressibility and curvature
energy.

II. CHARACTERISTICS OF THE CLASSICAL
PHASE-FIELD MODEL

Let us recall the main features of the “classical” phase-
field model. This will allow us to prepare the discussions of
Sec. III.

We focus in this section on the phase field �, and not on
the other variables of physical interest �like the velocity u,
etc.�. In the classical phase-field model the energy E reads

Ecl��,��� = W��� +
�

2
����2, �1�

where W��� is a double-well function �see Fig. 1� and � is a
positive coefficient, sometimes called the capillary coeffi-
cient �the reason for this denomination will become clear
below�. The function W��� is classically taken as a polyno-
mial of degree 4. However, our reasoning works perfectly
well with any other function, so we will not restrict the dis-
cussion to a specific form.

A. Thermodynamic equilibrium and consequences

The thermodynamic equilibrium is characterized by a
minimum of energy. For a general function E�� ,���, this
condition yields1

�E

��
− � · � �E

� � �
� = 0. �2�

For the particular case where the expression for E�� ,��� is
given by Eq. �1� and for a planar interface, the above equi-
librium condition yields

dW

d�
− ��� = 0, �3�

where ����d� /dr�, r being the coordinate normal to the
interface. The above differential equation can be integrated
once to get

�

2
����2 = W��� . �4�

This characterizes the profile ��r� across a planar interface at
equilibrium. Provided that the function W��� has adequate
characteristics, this equation ensures that the phase field var-
ies smoothly across the interface, thus defining a diffuse in-
terfacial zone. This property is the basic attractive feature of
phase-field models.

As pointed out in the Introduction, with the classical
phase-field model, an interface is endowed with a surface
tension energy. Let us call the total energy �, namely,

� = �
−�

+� �W��� +
�

2
����2�dr . �5�

Using Eq. �4� one finds

� = �
−�

+�

�����2dr . �6�

This is the surface energy. As we shall see, in the classical
model, the phase field is a tanh profile across the interface of
width 	�, so that �� is a Dirac-like function centered around
the interface. Thus � may be viewed as the excess energy
due to the presence of the interface, and it is a positive
quantity.2

Using Eq. �4�, one can write

� = �
�0

�1 	2�W���d� , �7�

where �0 and �1 are the phase-field values characteristic of
the bulk phases �corresponding to the two minima of the
double-well function W���; see Fig. 1�.

B. Dynamics: The Allen-Cahn equation

Out of equilibrium, the evolution equation for � is the
following relaxation equation �the so-called Allen-Cahn
equation�:

1We do not consider that the phase field is a conserved quantity.

2Note that, in the usual Gibbs definition of �extensive� surface
quantities, it is not a priori always obvious how to fix in advance
the sign of surface quantities. Contrariwise, �, from the basic defi-
nition, must be positive.

ϕ0 ϕ1

W

ϕ

FIG. 1. Double-well function W���.
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��

�t
= − ��̃ , �8�

where the mobility � is positive �and may depend on the
thermostatic variables of the model� and �̃ is the generalized
chemical potential defined by

�̃ =
	E

	�
=

�E

��
− � · � �E

� � �
� , �9�

where 	 /	� stands for the functional derivative with respect
to �. The Allen-Cahn equation �8� is thermodynamically
consistent. Indeed, on multiplying this equation by �̃, it is
straightforward to show that

�E��,���
�t

= − ��̃2 
 0. �10�

This inequality may be viewed as an expression of the sec-
ond law of thermodynamics. Obviously, at steady state, the
equilibrium condition �2� is recovered.

In the classical phase-field model where the energy
E�� ,��� is given by Eq. �1�, the Allen-Cahn equation reads

��

�t
= − ��dW

d�
− ��2�� . �11�

A requirement of phase-field models is that they should re-
cover the sharp interface equations �i.e., a surface of discon-
tinuity�. This task is achieved by performing matched
asymptotic expansions in powers of the interface width. For-
mally, one defines a small parameter � representing the ratio
�h /L�, where h is the interface thickness and L is a charac-
teristic outer length, typically the radius of an inclusion
�droplet, vesicle, etc.�. In the interface region � varies
abruptly �in the inner region�, while it is smooth elsewhere
�outer region�. Using the method of matched asymptotic ex-
pansions, for the classical model where the energy is given
by Eq. �1�, it is by now quite well known that �see also later
in this paper�, at zeroth order in �, � is the equilibrium pro-
file of a planar interface characterized by Eq. �4�. At first
order in �, it is found that the speed of the normal displace-
ment of the interface, vn, obeys

v̄n
�0� � C̄�0��

−�

+�

��̄�0�
,r̄�

2dr̄ �12�

where 
̄ represents the inner solution of a quantity 
, the
superscript �0� represents the zeroth-order approximation, r
is the coordinate normal to the interface, and C is the inter-
face curvature �see Appendix A for details�. This result
shows that the classical Allen-Cahn equation induces a mo-
tion of the interface proportional to its curvature. This is a
quite classical result.

Mathematically, we can view the origin of this contribu-
tion as follows. In the Allen-Cahn equation, the term �2�
can be decomposed as follows:

�2� = 
��
 � · � ��


��
� + � ��


��

�

��


��
�:��� . �13�

The vector �� / 
��
 is the unit normal to the interface and
� · ��� / 
��
� is therefore its local mean curvature C. The
curvature dependence of the interface velocity �12� is the
signature of the zeroth-order approximation of the term
�
��
� · ��� / 
��
�� of Eq. �13�. The second term of the
right-hand side of Eq. �13� represents the second derivative
in the direction normal to the interface and is the equivalent
of �� in the case of a planar interface. This term is therefore
important because, combined with W���, it ensures the regu-
larity of the phase-field profile in the direction normal to the
interface �see Eq. �3��.

The main idea of the model proposed by Folch et al. �2� is
to eliminate the curvature dependence of the interface veloc-
ity at zeroth order by dropping the contribution
�
��
� · ��� / 
��
�� from the Allen-Cahn equation �11�. It is
worth pointing out that their analysis �2� is a zeroth-order
analysis of the interface velocity. This remark is important
for the subsequent discussions. The modified Allen-Cahn
equation proposed in Ref. �2� is thus the following:

��

�t
= − ��dW

d�
− ��2� + �
��
 � · � ��


��
�� . �14�

However, as pointed out in the Introduction, this modified
Allen-Cahn equation is not thermodynamically consistent:
no energy has been found to be associated with this equation.
We shall show below how this equation must be modified
within a thermodynamic picture. Moreover, one must answer
also the question of whether or not the modified equation
will alter the other equations of the model, and, if so, how
should this occur while preserving the thermodynamic con-
sistency? This is the main goal of this paper.

III. THERMODYNAMICALLY CONSISTENT MODEL

A. Main ideas

In order to eliminate the interface velocity due to curva-
ture, one should eliminate the surface tension energy from
the classical phase-field model. However, the elimination of
the surface energy should keep the diffuse nature of the in-
terface.

The basic idea that underlies thermodynamic consistency
is to rewrite the first principle of thermodynamics by elimi-
nating the surface energy in the membrane problem. Thus,
we aim at constructing an energy E�� ,��� which we write
in the following form:

E��,��� = Ecl��,��� − E	��,��� , �15�

where Ecl�� ,��� is the classical phase-field functional,
while E	�� ,��� is sought for such that �1� it eliminates the
surface energy due to Ecl and �2� it does not modify �or only
very slightly modifies� the phase-field profile across the in-
terfacial zone. It will be shown later that, from the
asymptotic expansion, the model we propose recovers that
presented in Ref. �2�. The novelty is that our model preserves
thermodynamic consistency.
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From Eqs. �8�, �9�, �14�, and �15�, and by identification,
we deduce that, if the model of Ref. �2� were thermodynami-
cally consistent, the function Ecl�� ,��� would satisfy the
following relation:

�E	

��
− � · � �E	

� � �
� = �
��
 � · � ��


��
� . �16�

We will show later that no function E	�� ,��� can satisfy
this equation, while respecting the above two requirements 1
and 2

Since

�
��

� � �

=
��


��

, �17�

Eq. �16� suggests that E	 should be sought for in the follow-
ing form:

E	��,��� = ���, 
��
�
��
 . �18�

At this point, the introduction of the function � is somewhat
arbitrary and does not introduce any restriction in the analy-
sis.

In the following section, we derive the general condition
that the function ��� , 
��
� must satisfy so that the energy
E	 satisfies the two requirements listed above.

B. Some preliminary general results

For the sake of simplicity, let us first consider the case of
a planar interface at equilibrium. This also corresponds to the
zeroth-order approximation in the asymptotic analysis of the
Allen-Cahn equation, which is the reference of our analysis.
We shall see later how the results derived in this section can
be extended to a general curved geometry.

Unlike the classical phase-field model that automatically
induces a surface energy �as expressed by Eq. �5��, the intro-
duction of an additional contribution E	 offers an extra free-
dom that is chosen by the demand that the surface energy
vanishes. We must thus, accordingly, impose

�
−�

+�

�Ecl��,��� − E	��,����dr = 0. �19�

This is the very definition of the surface energy correspond-
ing to the modified model. We require this energy to be zero
by definition.

Using Eqs. �1�, �5�, and �18�, the above requirement is
equivalent to the following condition for ��� , 
��
�:

�
−�

+�

���,�����dr = � , �20�

where we recall that � is the surface energy associated with
the classical phase-field model, i.e., corresponding to the sole
energy Ecl. By the change of variable ��r�, this condition can
be replaced by the following condition:

�
�0

�1

�„�,�����…d� = � �21�

It is worth noting that many functions satisfy this condition.
A particular choice is �=� / ��1−�0�. This is the simplest
function that eliminates the surface tension energy from our
model.

We now turn our attention to the condition that the phase-
field profile should be close to that of the classical phase-
field model. For that purpose, we assume that

�E	

��
− � · � �E	

� � �
� = 
��, 
��
� � · � ��


��
� , �22�

where the function 
�� , 
��
� is general and not necessarily
equal to �
��
 as in the “ideal” case �16�. The general equi-
librium condition �2� applied to a planar interface and to the
energy �15� with �18� shows that the equilibrium profile
obeys the following equation:

dW

d�
− ��� + 
��,������

��
��

= 0. �23�

The last term of the above equation vanishes for any function

�� ,���, so that the equilibrium profile satisfies the follow-
ing differential equation:

dW

d�
− ��� = 0. �24�

This differential equation is exactly that of the classical
phase-field model �3�.

This result shows that, if the variational derivative of E	 is
of the form �22�, the equilibrium profile of the phase field
across a planar interface is not modified compared to that of
the classical phase-field model. We must now show which
condition should ��� , 
��
� satisfy so that the variational
derivative of �sought after� E	 takes the form �22�.

Using the general form �18� for E	, one has

�E	

��
− � · � �E	

� � �
� =

��

��

��
 − �� ��

�
��


��
 + �� ·

��


��


− � ��

�
��


��
 + �� � · � ��


��
� . �25�

By identification of the last term with the right-hand side of
Eq. �16�, one would impose

��

�
��


��
 + � = �
��
 ⇔ ��
��
� =

�

2

��
 . �26�

However, with this dependence, the second term of the right-
hand side of Eq. �25� would not vanish and the condition
�16� would not be satisfied. Moreover, with this solution, the
energy of the system would simply be E=W��� and the in-
terface would no longer be diffuse.

This is the main argument to justify that, even though this
solution appears to be the most intuitive, it is not possible
that the function � depends on 
��
. If the function � de-
pends only on �, the expression �25� for the functional de-
rivative of E	 reads
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�E	

��
− � · � �E	

� � �
� = ���� � · � ��


��
� . �27�

By comparing this expression with the “ideal” expression
�16� sought for, one sees that these expressions are very simi-
lar. In particular, they are both proportional to the interface
curvature � · ��� / 
��
�, which is the most important char-
acteristic �we showed in Sec. II B that we seek to eliminate a
contribution of the interface velocity proportional to this cur-
vature�. For the two expressions to be equivalent, one needs
a relation between � and 
��
 such that

�„�eq�x�… = �
��
eq�x� . �28�

It is worth emphasizing that this relation is not in contradic-
tion with our previous result stating that � cannot depend on
the variable ����. Indeed, this latter result is functionnal
while the above relation follows from minimization of the
energy, which leads naturally to a relation between the pro-
file �eq�x� and 
��
eq�x� as in Eq. �4�.

In the following section, we propose a model that satisfies
this requirement.

C. Energy of the system

In the thermodynamic model, � and 
��
 are considered
as independent variables. However, we showed in Sec. III B
that, for our model, the relation �28� should be satisfied. Such
a relation is not possible in general. However, for a planar
interface at equilibrium, such a relation exists, as shown by
Eq. �4�. Based on this result it is appealing to suggest

���� = 	2�W��� �29�

and

E	 = 	2�W���
��
 . �30�

The full energy thus assumes the following form:

E��,��� = W��� +
�

2
����2 − 	2�W���
��
 . �31�

From Eqs. �27� and �29�, one has

	E	

	�
= 	2�W��� � · � ��


��
� . �32�

We showed in Sec. III B that, since the expression �32� is of
the general form �22�, the phase-field profile across a planar
interface is not modified compared to the classical phase-
field model.

Moreover, the condition �21� to eliminate the surface ten-
sion energy yields

� = �
�0

�1 	2�W���d� . �33�

This condition is indeed satisfied since it corresponds to the
definition of the surface tension energy of the classical
phase-field model �see Eq. �7��.

Finally, we emphasize that the key relation on which our
model is based is the following approximation that is stricly
an equality for a planar interface at equilibrium:

	2�W��� 
 �
��
 . �34�

This approximation allows us to make the model of Ref. �2�
thermodynamically consistent.

Since the asymptotic analysis shows that, at the dominant
order, the phase-field profile across a locally spherical inter-
face is that of a planar interface at equilibrium, i.e., where
the relation �34� is actually an equality, the thermodynamic
model proposed is expected to be equivalent to that of Folch
et al. �2� at the dominant order. More precisely, the expan-
sion at order one shows that the interface velocity depends
on the phase-field profile at order zero. Since the latter is the
same in our model as in that of Ref. �2�, it is expected that
the dominant interface velocity is nil in both models. How-
ever, at higher orders, the two models are expected to be
different because the relation �34� is no longer an equality at
these orders. This is why the asymptotic analysis of our
model is developed up to the second order �see Sec. IV�.

D. Dynamic model

The general Allen-Cahn equation is given by Eq. �8�. In
the particular case of our model where the expression for the
free energy of the system is given by Eq. �31�, it is straight-
forward to show that

��

�t
= − ��dW

d�
− ��2� + 	2�W��� � · � ��


��
�� . �35�

As desired, this equation is very similar to the equation of
the model of Folch et al. �2� �see Eq. �14��: the term �
��
 of
the latter model is simply replaced by 	2�W��� in our
model.

IV. ASYMPTOTIC ANALYSIS

A. Nondimensional form of the Allen-Cahn equation

We recall that the equation studied in Ref. �2� is the fol-
lowing:

�2��

�t
= f��� + �2�2� − �2
��
 � · � ��


��
� . �36�

For the sake of comparison with the above equation, it is
convenient to write our Allen-Cahn equation in a nondimen-
sional form.

We define the nondimensional energy w��� such that

1

�
W��� =

1

h2w��� �37�

where h is the interface thickness. The differential operator
� is made nondimensionnal through the introduction of an
outer length scale L �typically the size of the entity under
consideration�. The Allen-Cahn equation �35� thus reads

−
h2

��

��

�t
=

dw

d�
− �2�2� + �	2w��� � · � ��


��
� . �38�

If the time scale tc is defined by

THERMODYNAMICALLY CONSISTENT PICTURE OF THE… PHYSICAL REVIEW E 78, 041903 �2008�

041903-5



tc =
L2

��
, �39�

one gets

− �2��

�t
=

dw

d�
− �2�2� + �	2w��� � · � ��


��
� . �40�

Our scaling is coherent with that of Ref. �2� because

	2w��� 
 �
��
 . �41�

The details of the asymptotic analysis of the nondimensional
Allen-Cahn equation �40� are presented in Appendix A. In
the following sections, we recall and discuss the main re-
sults.

B. Zeroth-order solution

At zeroth order in �, it is found that the phase field across
the interfacial zone satisfies the following differential equa-
tion:

w���̄�0�� − �̄�0�
,r̄r̄ = 0. �42�

We have adopted the differentiation convention such that the
subscript x designates the derivative with respect to x, and
the subscript xx is the second derivative, and so on. This
differential equation is that of a planar interface at equilib-
rium �see Eq. �3��. By integration and accounting for the
matching conditions, one gets

w��̄�0�� =
1

2
��̄�0�

,r̄�
2. �43�

This equation means that, at the dominant order, the approxi-
mation �34� is actually an equality.

C. First-order solution

At first order, it is found that

�̄�1�
,r̄r̄ − w���̄�0���̄�1� = vn

�0��̄�0�
,r̄ + C̄�0���̄�0�

,r̄ − 	2w��̄�0��� .

�44�

Accounting for the zeroth-order solution �43�, the last two
terms in square brackets of this equation cancel out, so that

�̄�1�
,r̄r̄ − w���̄�0���̄�1� = vn

�0��̄�0�
,r̄. �45�

It is worth noting that, with the model of Folch et al. �2�, the
term 	2w��̄�0�� of Eq. �44� is replaced by �̄�0�

,r̄. In both
cases, the consequence is the same: the term proportional to

C̄�0� vanishes.
The solvability condition of Eq. �45� reads

�
−�

+�

vn
�0���̄�0�

,r̄�
2dr̄ = 0, �46�

which implies that

vn
�0� = 0 . �47�

As expected, the interface velocity is nil, as in Ref. �2�.

Moreover, in Appendix A 5, it is shown that

�̄�1��r̄� = 0. �48�

D. Second-order solution

At second order, it is found that

�̄�2�
,r̄r̄ − w���̄�0���̄�2� = − vn

�1��̄�0�
,r̄ − w���̄�0�� . �49�

The solvability condition of this equation reads

vn
�1��

−�

+�

��̄�0�
,r̄�

2dr̄ = �
−�

+�

�̄�0�
,r̄w���̄�0��dr̄ . �50�

Accounting for Eq. �42�, one has

vn
�1� = 0 . �51�

In order to compare this result with those of Ref. �2�, we
have extended their asymptotic expansion up to second order
in �. Surprisingly, the result is identical to ours. This was not
expected a priori because our model is such that the equality

��
=	2�W��� is a priori satisfied only at equilibrium of a
planar interface, i.e., at zeroth order in �.

The only difference between our model and that of Folch
et al. �2� is that the term �2
��
 in the factor of � · ��� / 
��
�
is their nondimensional Allen-Cahn equation is replaced by
�	2w��� in ours. We thus compare these two expressions.
Since both models are equivalent at zeroth order, we use this
solution to simplify the expressions.

Using


��
 =
1

�
�̄�0�

,r̄ + �̄�1�
,r̄ + O��� , �52�

it is found that

�2
��
 � · � ��


��
� = ��− C̄�0��̄�0�
,r̄� + �2�− C̄�0��̄�1�

,r̄

− �̄�0�
,r̄�r̄�C̄�0��2 + C̄�1��� + O��3� ,

�53�

whereas

�	2w��� � · � ��


��
�
= ��− C̄�0��̄�0�

,r̄� + �2�− C̄�0� w���̄�0��
	2w��̄�0��

�̄�1�

− �̄�0�
,r̄�r̄�C̄�0��2 + C̄�1��� + O��3� . �54�

Comparing these two expressions shows that the only differ-
ence is at second order in �, where the term �̄�1�

,r̄ in the
model of Folch et al. �2� is replaced by the term
�̄�1�w���̄�0�� / �̄�0�

,r̄ in ours. However, since in both cases it is
found that �̄�1��r̄�=0, the two models are identical up to sec-
ond order, which was not expected a priori.
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E. Comments

We have seen above that to leading order it is legitimate
to replace the term �
��
 by 	2�W���, in which case it is
possible to define an energy for the system. Our model, while
recovering the result of Ref. �2�, enjoys thermodynamic con-
sistency. Note that only integral quantities enter our analysis:
the definition of surface tension is an integral �see Eq. �5��
and the fact that the interface velocity is nil at first order in �
is also an integral condition �see Eqs. �44� and �46��. Thus, in
principle, only a condition on the integral of the energy E	

could have been sufficient a priori. However, what the model
does is to eliminate the effect of the surface tension locally
and not only globally, which is a stronger result.

To illustrate this point, let us consider a spherical inter-
face. We expect that, with the classical phase-field model, it
is not possible to get an equilibrium profile, since the system
constantly evolves to minimize its surface energy �the veloc-
ity never vanishes as long as the curvature is not nil�. On the
contrary, with the model of Ref. �2� as well as with ours, it is
possible to get an equilibrium state for any radius of curva-
ture. To see this, we study the equilibrium for a sphere. At
equilibrium we have ��� /�t�=0, so that the Allen-Cahn
equation �35� degenerates to

dW

d�
− �

d2�

dr2 =
2

r
��

d�

dr
− 	2�W���� , �55�

where r is the radial coordinate.
The last term of this equation is absent in the classical

phase-field model. This implies absence of equilibrium. In-
deed, without that term, we have seen that we have a nonzero
velocity. In the model of Ref. �2�, the last term of this equa-
tion is replaced by ��d� /dr� so that the right-hand side van-
ishes. Thus, the differential equation obtained is exactly that
of a planar interface and �i� equilibrium is possible and �ii�
the phase-field profile is thus identical to that of a planar
interface3. In our model, the argument is more subtle, albeit
the implication is the same: if the left-hand side is nil, then
the right-hand side is nil as well.

In the simplest case that eliminates the surface tension
energy, E	 is constant: E	=� / ��1−�0�
��
 �see Sec. III B�.
In this case, the elimination of the surface tension is only
global and not local, in the sense that only the integral of the
energy is nil but not the local energy �i.e., at each point
within the interfacial zone�. It follows that the above differ-
ential equation reads

dW

d�
− �

d2�

dr2 =
2

r
��

d�

dr
−

�

�1 − �0
� . �56�

Now it is less obvious that this equation has a solution. Nev-
ertheless, in the particular case where the radius of the inclu-
sion is very large compared to the interface thickness, it is
possible to make the approximation �2 /r�
cte and it is then
possible to apply the solvability condition and to show that
an equilibrium solution does exist. However, one sees that

the result is less general than in the more complex cases of
our model.

This is why it is important to eliminate the surface tension
energy “locally” and not only “globally.” This follows natu-
rally from our model.

V. THERMODYNAMICALLY CONSISTENT PHASE-FIELD
MODEL FOR VESICLES

In the absence of a systematic frame, traditional phase-
field equations are based on guesses, intuition, and on how
an effect may be included while keeping sensible physics.
The various phase-field models developed to date, including
on vesicles �3�, have, nevertheless, several important merits,
among which is the fact that they have been able to produce
quantitative numerical results. Nevertheless, it is not a priori
obvious to see the implication of a change of a given equa-
tion on the full set of equations if one has in mind the de-
velopment of models in the spirit of thermodynamics. There-
fore, seeking for a thermodynamic consistency of the model
is also an interesting way of thinking, since it allows one to
keep overall coherence.

Let us turn to the vesicle and membrane problem and
write the complete set of equations. Let us first begin with a
simple case that includes only the coupling between the
phase-field equation and the momentum balance equation in
the absence of any curvature energy. The thermodynamically
consistent model corresponds to the front-capturing method,
as studied in �7� �even though the model studied in �7� is not
thermodynamically consistent�.

A. Hydrodynamics and surface tension force

The phase-field equation in the presence of a flow is given
by

d�

dt
= − ��dW

d�
− ��2� + 	2�W��� � · � ��


��
�� , �57�

where d /dt��� /�t+u ·�� is the material derivative, and
where u is the fluid velocity. By virtue of the fact that E
depends only on � and ��, it can be shown that the general
form of the momentum balance equation reads as follows
�see �10,11��:

�0
du

dt
= − �P − � · � �E

� � �
� ��� + � · �d, �58�

where P is the pressure and �d is the dissipative stress tensor
�e.g., the classical Newtonian expression, where a viscosity
contrast can be included, as in Refs. �3,4��. It is obvious that
the right-hand side of the above equation is the divergence of
a stress tensor. In comparison to the usual Newtonian stress
tensor, there is an additional contribution coming from the
phase-field model �second term on the right-hand side�.

As shown in �10� for instance, by scalar multiplication of
the above equation u, multiplication of the the Allen-Cahn
equation �57� by �̃, and then addition of the two equations
thus obtained, one gets the following inequality:

3Actually, this is true only if �d2� /dr2�
0 at r=0, a condition
that is indeed satisfied as long as the radius of the interface is
somewhat larger than the interface thickness.
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d

dt
�

V
�E��,��� +

�0u2

2
�dV 
 0, �59�

which is nothing but an expression of the second law of
thermodynamics. In the particular case where the expression
for E�� ,��� is given by Eq. �31�, one gets

�0
du

dt
= − �P − � · ��� −

	2�W���

��


� � � � ��� + � · �d.

�60�

Recalling the approximation �34�, one has

� −
	2�W���


��


 0, �61�

which implies that the surface tension force corresponding to
the proposed model is approximately nil. Thus, the model
proposed induces approximately no surface tension force for
any configuration. However, a surface tension force �as well
as a surface tension energy� may show up when the profile of
the phase field across the interface is far from an equilibrium
profile.

It is worth noting that the momentum balance equation
�58� has the following equivalent potential form �following
�8��:

�0
du

dt
= − �P̃ + �̃ � � + � · �d, �62�

where P̃= P+E. This form has proven to be convenient for
the development of numerical schemes as shown in �8,9�. In
the classical phase-field model, �̃ is proportional to the in-
terface curvature C. However, in our model, �̃ is almost nil,
owing to the fact that we have subtracted the surface energy
contribution.

B. Model for vesicles and membranes

In this section, we present a thermodynamically consistent
model for vesicles. Vesicle membranes have two important
physical characteristics. First, the membrane is locally in-
compressible, in the sense that its local surface area is con-
stant in the course of time. Second, it is endowed with a
surface curvature energy proportional to �C−C0�2, where C0
is a constant called the spontaneous curvature. Due to the
fact that the membrane does not exchange mass with the
solution, the notion of surface energy �as for a droplet� does
not make sense �the absence of a chemical potential from an
underlying reservoir�. The surface energy does not enter �but
a tension, due to external stretching for example, may be
considered in general; this is not dealt with here�. In �10,11�,
it is shown that the incompressibility constraint and the cur-
vature energy can be accounted for in a thermodynamically
consistent phase-field approach. In Sec. III, we showed that
the surface tension energy embedded in the classical phase-
field model can be eliminated in the framework of a thermo-
dynamically consistent approach.

In this section, we present a full phase-field model of
vesicles and membranes that accounts for the membrane in-

compressibility and for a curvature energy and that does not
exhibit any surface tension effect.

The energy of the model is the sum of three contributions:

E = Edif + Einc + Ecurv, �63�

where Edif is related to the diffuse interface model with no
surface tension, Einc accounts for the membrane incompress-
ibility, and Ecurv accounts for the curvature energy of the
membrane. Their respective expression are the following:

Edif��, 
��
� = W��� +
�

2
����2 − 	2�W���
��
 , �64�

Einc�
��
,�� =
�

2
�
��
 − ��2, �65�

where � is the stretching modulus of the membrane and �
represents the local surface area per unit volume at equilib-
rium �see Ref. �10� for more details�; and

Ecurv�
��
,C� =
�

2
�C − C0�2
��
 , �66�

where � is the rigidity of the membrane.
We introduce the tensionlike field � defined by �see �10��

� = − ��� − 
��
� . �67�

We recall that, as shown in Ref. �10�, the surface area of the
membrane is conserved and is thus locally incompressible in
the limit �→�.

We then introduce the three corresponding generalized
chemical potentials defined, respectively, as follows:

�̃dif =
dW

d�
− ��2� + 	2�W���C , �68�

�̃inc = − � · ��n� , �69�

�̃curv = −
�

2
��C − C0��− C�C + C0� + 4H� − 2�s · ��sC�� ,

�70�

where n represents the unit vector normal to the interface, C
its mean curvature, and H its Gauss curvature. They are de-
fined by

n =
��


��

, �71�

C = � · n , �72�

H =
1

2
���s · n�2 − �sn:�sn� . �73�

The system of equations of the model is the following:

� · u = 0, �74�

1

�

d�

dt
= �I − n � n�:�u + n · ��d�

dt
� , �75�
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d�

dt
= − ���̃dif + �̃inc + �̃curv� , �76�

�0
du

dt
= − �P + ��̃dif + �̃inc + �̃curv� � � + � · �d, �77�

where the simplest expression for �d is that of a Newtonian
fluid with a variable dynamic viscosity �,

�d = ������u + ��u�T� . �78�

It is worth emphasizing that the term in �� on the right-hand
side of Eq. �77� can be written as the divergence of the stress
tensor �=�dif+�inc+�curv. The tensor �dif corresponds to the
energy discussed in this paper and is given by Eq. �60�. The
expression for the tensor �inc is given by Eqs. �29� and �31�
of Ref. �10�. Finally, the expression for the tensor �curv is
given by Eq. �32� of Ref. �11�.

Equation �75� is the equation of evolution of the tension-
like field that imposes local membrane incompressibility.4 In
this equation, the larger � is, the better the condition of local
incompressibility is satisfied. In the momentum balance
equation, three forces normal to the interface appear. The
force ��̃dif��� is very small because it represents the “sur-
face tension force,” which is almost nil �cf. Sec. III�. The
force ��̃inc��� represents the force due to the local incom-
pressibility of the membrane �see �10��. Finally, the force
��̃curv��� is the Helfrich force due to the curvature energy
of the membrane �see �11��.

The system of equations �74�–�78� is thermodynamically
consistent. This can be checked by scalar multiplication of
Eq. �77� by u and multiplication of Eq. �76� by ��̃dif+ �̃inc
+ �̃curv�, and then addition of the equations thus obtained. It
is then found that the total energy of the system �V�E
+�0u2 /2�dV is a decreasing function of time.

VI. CONCLUSION

This paper constitutes the last of a series of three papers
that deal with phase-field modeling of vesicles and mem-
branes that retains thermodynamic consistency. The thermo-
dynamic consistency offers a systematic frame that allows
one to introduce different effects in the model. Other fea-
tures, like permeations, interaction with a concentration field,
nondiagonal Onsager terms, and so on, can be treated along
the same lines.

In traditional phase-field models �i.e., models that do not
consider thermodynamic consistency�, it is sometimes found
that, due to the freedom of choice of different terms and
functions in the model, there is an advantage in bypassing
thermodynamic consistency, which imposes a constraint that
is too strong. On the one hand, from the conceptual point of
view, it is more comforting to have at our disposal a consis-
tent frame in which the various effects are included in a local

thermodynamic picture systematically, and then use is made
of second law of thermodynamics. The existence of this prin-
ciple ensures the fact that the physical evolution of the sys-
tem makes sense. On the other hand, it is likely that the
thermodynamic consistency imposes some constraint on nu-
merical schemes, and once the constraints are properly iden-
tified, the schemes may exhibit advantages over the usual
methods. This point still needs further studies. We hope to
report on numerical exploitation of the models in the future.
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APPENDIX A: DETAILS OF THE ASYMPTOTIC ANALYSIS

In this appendix, we provide some details for the
asymptotic analysis of the Allen-Cahn equation �35� corre-
sponding to our model:

��

�t
= − ��dW

d�
− ��2� + 	2�W��� � · � ��


��
�� .

�A1�

1. Geometry and scale factors

Following Folch et al. �2�, we introduce a frame of refer-
ence linked to the interfacial zone. For the sake of simplicity,
only the two-dimensional case is studied.

Let us consider a curve defined by an isocontour of the
phase field. For this curve to be representative of the inter-
face location, the isovalue of the phase field can be set to
��0+�1� /2. This curve is denoted �. Let s be the arclength
along �. The coordinates of a point located on � are denoted
�X ;Y�. Let � be the angle going from ex to es �see Fig. 2�. By
definition, the local curvature C of � is C=�,s.

5 By moving a
point along �, one has

dX = cos � ds ,

dY = sin � ds . �A2�4In Ref. �10�, the last term of the right-hand side of Eq. �75� has
been omitted. Nevertheless, in Sec. IV, we have shown that with the
present model, d� /dt
0 up to second order in � and this term can
thus be omitted up to this order. 5It is worth noting that C depends only on s.

Γ

(X ; Y )

x

y

sα

ϕ = (ϕ0 + ϕ1)/2

r

(x; y)

FIG. 2. System of coordinates related to the interface
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We now consider a point located out of � and we denote
its coordinates as �x ;y�. The coordinates of the closest point
located on � are denoted �X ;Y�. One has �see Fig. 2�

x�s,r� = X�s� − r sin ��s� ,

y�s,r� = Y�s� + r cos ��s� . �A3�

This defines the change of coordinates we consider.
The corresponding scale factors are given by

hr
2 = � �x

�r
�2

+ � �y

�r
�2

= 1,

hs
2 = � �x

�s
�2

+ � �y

�s
�2

= �1 − rC�2. �A4�

2. Expressions for the differential operators

These are

�a = a,rer +
1

1 − rC
a,ses, �A5�

� · b = br
,r +

− Cbr + bs
,s

1 − rC
, �A6�

�2a = a,rr −
C

1 − rC
a,r +

1

�1 − rC�2a,ss +
r

�1 − rC�3C,sa,s.

�A7�

3. Change of coordinates

In the method of matched asymptotic expansions, the do-
main is divided into an inner zone, where the phase field
strongly varies, and an outer zone, where the phase-field
variations are weak. Since the nondimensional width of the
inner zone is of the order of � �by definition�, to study the
inner solution, we zoom in on the interfacial region by de-
fining the following new space variable:

r̄ = �r , �A8�

so that

1

1 − rC
= 1 + �r̄C + �2r̄2C2 + O��3� . �A9�

With this change of variable, one has

�a =
1

�
ā,r̄er̄ + ā,s�1 + �r̄C + �2r̄2C2 + O��3��es, �A10�

� · b =
1

�
b̄r

,r̄ + �b̄s
,s − Cb̄r��1 + �r̄C + �2r̄2C2 + O��3�� ,

�A11�

�2a =
1

�2 ā,r̄r̄ −
1

�
Cā,r̄

+ �− r̄C2ā,r̄ + ā,ss� + ��− r̄2C3ā,r̄ + 2r̄Cā,ss + r̄C,sā,s�

+ O��2� , �A12�

�a

�t
= � �a

�t
�

x,y=cte
=

da

dt
− v · �a =

da

dt
− vn�1

�
ā,r̄� − vt�ā,s

+ �r̄Cā,s� + O��2� , �A13�

�a

�t
=

1

�
�− vnā,r̄� + �da

dt
− vtā,s� + ��− vtr̄Cā,s� + O��2� ,

�A14�


�a
 =
1

�
ā,r̄ + �

1

2

�ā,s�2

ā,r̄

+ �2r̄C �ā,s�2

ā,r̄

+ O��4� , �A15�

�a


�a

= �1 −

�2

2

�ā,s�2

�ā,r̄�2 − �3r̄C �ā,s�2

�ā,r̄�2
+ O��4��er

+ ��
ā,s

ā,r̄

+ �2r̄C ā,s

ā,r̄

+ O��4��es, �A16�

� · � �a


�a
� = − C + ��� ā,s

ā,r̄
�

,s

−
1

2� �ā,s�2

�ā,r̄�2�
,r̄

− r̄C2�
+ �2��r̄C ā,s

ā,r̄
�

,s

+ r̄C� ā,s

ā,r̄
�

,s

− �r̄C �ā,s�2

�ā,r̄�2�
,r̄

+
C
2

�ā,s�2

�ā,r̄�2 − r̄2C3� + O��3� . �A17�

Any function 
̄�r̄ ,s� is expanded in � as follows:


̄�r̄,s� = 
̄�0��r̄,s� + �
̄�1��r̄,s� + �2
̄�2��r̄,s� + ¯ .

�A18�

If we apply this expansion to the functions 	w��� and w����,
we get

	w��� = 	w��̄�0���1 + �
�̄�1�

2w��̄�0��
w���̄�0��� + O��2� ,

�A19�

w���� = w���̄�0�� + ��̄�1�w���̄�0�� + �2��̄�2�w���̄�0��

+
��̄�1��2

2
w���̄�0��� + O��3� . �A20�

Thus

�2�2� = �̄�0�
,r̄r̄ + ���̄�1�

,r̄r̄ − C̄�0��̄�0�
,r̄� + �2��̄�2�

,r̄r̄ − C̄�0��̄�1�
,r̄

− r̄�C̄�0��2�̄�0�
,r̄ + �̄�0�

,ss − C̄�1��̄�0�
,r̄� + O��3� , �A21�

D. JAMET AND C. MISBAH PHYSICAL REVIEW E 78, 041903 �2008�

041903-10



� · � ��


��
� = − C̄�0� + ��� �̄�0�
,s

�̄�0�
,r̄
�

,s

−
1

2�� �̄�0�
,s

�̄�0�
,r̄
�2�

,r̄

− r̄�C̄�0��2 − C̄�1�� + O��2� , �A22�

�	2w��� � · � ��


��
� = ��− C̄�0�	2w��̄�0��� + �2�− C̄�0� �̄�1�

	2w��̄�0��
w���̄�0��

+ 	2w��̄�0���� �̄�0�
,s

�̄�0�
,r̄
�

,s

−
1

2�� �̄�0�
,s

�̄�0�
,r̄
�2�

,r̄

− r̄�C̄�0��2 − C̄�1��� + O��3� . �A23�

Like any other function, the velocity v is a function of
space �and time� and thus has to be expanded in �:6

v = v̄�0� + �v̄�1� + O��2� . �A24�

Equation �A14� thus yields

�2��

�t
= ��− v̄n

�0��̄�0�
,r̄� + �2�d�̄�0�

dt
− v̄n

�0��̄�1�
,r̄ − v̄t

�0��̄�0�
,s

− v̄n
�1��̄�0�

,r̄� + O��3� . �A25�

The expansions in � derived above are injected in the Allen-
Cahn equation �A1� to get the corresponding equations at
different orders in �.

4. Zeroth-order solution

At zeroth order in �, Eq. �A1� yields

w���̄�0�� − �̄�0�
,r̄r̄ = 0. �A26�

By integration and accounting for the matching conditions,
we get

w��̄�0�� =
1

2
��̄�0�

,r̄�
2. �A27�

Moreover, it can be shown that �̄�0� is independent of s, so
that �̄�0�

,s=0 and �̄�0�
,ss=0.

5. First-order solution

At first order in �, Eq. �A1� yields

�̄�1�
,r̄r̄ − w���̄�0���̄�1� = v̄n

�0��̄�0�
,r̄ + C̄�0���̄�0�

,r̄ − 	2w��̄�0��� .

�A28�

Because of the zeroth-order solution, the last term of this
equation cancels out:

�̄�1�
,r̄r̄ − w���̄�0���̄�1� = v̄n

�0��̄�0�
,r̄. �A29�

The solvability condition reads

�
−�

+�

v̄n
�0���̄�0�

,r̄�
2dr̄ = 0 , �A30�

which implies that

v̄n
�0� = 0 . �A31�

We now seek for �̄�1��r̄�, the solution of the following
differential equation:

�̄�1�
,r̄r̄ − w���̄�0���̄�1� = 0. �A32�

It is easy to check that �̄�0�
,r̄ and �̄�0�

,r̄�dr̄ / ��̄�0�,r̄�2 are two
independent solutions of this equation. Thus, the general so-
lution of this differential equation reads

�̄�1� = C1�̄�0�
,r̄ + C2�̄�0�

,r̄� dr̄

��̄�0�
,r̄�

2
, �A33�

where C1 and C2 are two constants that have to be deter-
mined.

It can be shown that, provided that

w��� � �� − ����n for � � ��� �A34�

with n�2, the second particular solution does not satisfy the
matching conditions that �̄�1� must satisfy. Therefore, C2=0.

Moreover, the first particular solution is such that it is
different from ��0+�1� /2 at r̄=0. Therefore, C1=0.

Therefore

�̄�1��r̄� = 0. �A35�

6. Second-order solution

At second order in �, Eq. �A1� yields

�̄�2�
,r̄r̄ − w���̄�0���̄�2� = − v̄n

�1��̄�0�
,r̄ +

��̄�1�
,r̄�

2

2
w���̄�0��

+ C̄�0��̄�1�
,r̄ − �̄�0�

,ss − C̄�0�w���̄�0��
�̄�1�

�̄�0�
,r̄

.

�A36�

It is worth noting that this differential equation in �̄�2� has the
same structure as that in �̄�1�. The only difference comes
from the expression for the right-hand side.6This was not considered by Folch et al. �2�.
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The solvability condition reads

v̄n
�1��

−�

+�

��̄�0�
,r̄�

2dr̄ = �
−�

+�

�̄�0�
,r̄�−

��̄�1�
,r̄�

2

2
w���̄�0��

− C̄�0��̄�1�
,r̄ + C̄�0�w���̄�0��

�̄�1�

�̄�0�
,r̄
�dr̄ .

�A37�

Because �̄�1��r̄�=0, one has

v̄n
�1� = 0 . �A38�

The differential equation that �̄�2� must satisfy is the follow-
ing:

�̄�2�
,r̄r̄ − w���̄�0���̄�2� = 0. �A39�

APPENDIX B: SOLVABILITY CONDITIONS

In this appendix, we derive the solvability conditions at
first and second order in �. Let us define the linear operator

L�f� = f ,r̄r̄ − w���̄�0��f

and the dot product

f1 · f2 = �
−�

+�

L�f1�f2dr̄ .

It is straightforward to show that

�
−�

+�

L�f2�f1dr̄ = �
−�

+�

L�f1�f2dr̄ + �f2,r̄ f1 − f2f1,r̄�−�
+�.

�B1�

Now, if we apply the above relation with f1= �̄�0�
,r̄ and f2

= �̄�1�, one has L�f1�=0 and

�
−�

+�

L��̄�1���̄�0�
,r̄dr̄ = ��̄�1�

,r̄�̄
�0�

,r̄ − �̄�1��̄�0�
,r̄r̄�−�

+�.

Now the matching conditions are such that

lim
r̄→��

�̄�0�
,r̄ = 0,

lim
r̄→��

�̄�0�
,r̄r̄ = 0, �B2�

lim
r̄→��

�̄�1� = lim
r→�0

��1� + r̄ lim
r→�0

��0��,

lim
r̄→��

�̄�1�
,r̄ = lim

r→�0
��0��. �B3�

Thus7

�
−�

+�

L��̄�1���̄�0�
,r̄dr̄ = 0.

This relation corresponds to the solvability condition of the
inner problem at first order.

We now study the solvability condition corresponding to
the inner problem at second order. We apply the relation �B1�
with f1= �̄�0�

,r̄ and f2= �̄�2�. One has L�f1�=0 and

�
−�

+�

L��̄�2���̄�0�
,r̄dr̄ = ��̄�2�

,r̄�̄
�0�

,r̄ − �̄�2��̄�0�
,r̄r̄�−�

+�.

Now the matching conditions are such that

lim
r̄→��

�̄�2� = lim
r→�0

��2� + r̄ lim
r→�0

��1�� +
r̄2

2
lim

r→�0
��0��,

lim
r̄→��

�̄�2�
,r̄ = lim

r→�0
��1�� + r̄ lim

r→�0
��0��. �B4�

Because of the matching conditions �B2� and �B4�, one gets

�
−�

+�

L��̄�2���̄�0�
,r̄dr̄ = 0.
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